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Abstract—Experience developing and deploying model-based
diagnosis and recovery and other model-based technologies on
a variety of testbeds and flight experiments led us to explore
why our expectations about the impact of Model-Based Diagnosis
(MBD) on spacecraft operations have not been matched by
effective benefits in the field. By MBD we mean the problem
of observing a mechanical, software or other system and de-
termining what failures its internal components have suffered,
using a generic inference algorithm and a model of the system’s
components and interconnections. These techniques are very
attractive, suggesting a vision of machines that repair themselves,
reduced costs for all kinds of endeavors, spacecraft that continue
their missions even when failing, and so on. This promise inspired
a broad range of activities, including our involvement over several
years in flying the Livingstone and L2 onboard model-based
diagnosis and recovery systems as experiments on DS-1 and EO-
1 spacecraft. Yet in the end, no spacecraft project adopted the
technology in operations nor flew additional flight experiments.
To our knowledge, no spacecraft project has adopted any other
MBD technology in operations.

In this paper we present a cost/benefit analysis for MBD, using
expectations and experiences with Livingstone as an example. We
provide an overview of common techniques for making spacecraft
robust, citing fault protection schemes from recent missions. We
lay out the cost, benefit and risk advantages associated with
on-board MBD, and use the examples to probe each expected
advantage in turn. We suggest a method for evaluating a mission
that has already been flown and providing a rough estimate of the
maximum value that a perfect on-board diagnosis and recovery
system would have provided. By unpacking the events that must
occur in order to provide value, we also identify the factors
needed to compute the expected value that would be provided
by a real diagnosis and recovery system. We then discuss the
expected value we would estimate such a system would have had
for the Mars Exploration Rover mission. This has allowed us to
identify the specific assumptions that made our expectations for
MBD in this domain incorrect.

Index Terms—Model-Based Diagnosis, Fault Protection, space-
craft, cost, benefits, expected value.

I. INTRODUCTION

OVER the past 20 years, there has been much work in
the area of Model-Based Diagnosis (MBD). By this, we

mean diagnosis systems arising from Computer Science or
Artificial Intelligence approaches where a generic software
engine is combined with model of a system’s components
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and interconnections to generate diagnoses and more recently
to infer system recoveries or reconfigurations. Two diagnosis
and recovery systems spawned by this line of research were
exercised in simulations, on hardware testbeds and during two
flight experiments on the Deep Space 1 (DS-1) and Earth
Observer 1 (EO-1) spacecraft. A great deal of experience was
gained developing these systems and applying them to a vari-
ety of diagnosis domains involving spacecraft, chemical pro-
cessors, life support systems and scientific instruments. Sup-
porting infrastructure including modeling languages, graphical
model editors and validation tools was created in addition to
the core inference algorithms and software that performed di-
agnosis and recovery. In the end however, no spacecraft project
adopted the technology in operations nor flew additional flight
experiments. To our knowledge, no spacecraft project has
adopted any other MBD technology in operations. In short,
in the ten years since the first flight experiment, the benefits
we anticipated have not yet come to fruition.

This led to a series of questions. What are the costs of
using MBD, what benefits are observed in practice and how
can we approach the question of whether the benefits outweigh
the costs for spacecraft? How are missions today approaching
fault diagnosis and recovery during operations? How does the
proposed MBD approach differ with the current practice, and
why aren’t we able to leverage MBD technologies to provide
greater value or lower cost? Is there something about planning
software, in many ways a similar model-based technology,
that has made it more successful, and what does that tell us?
By attempting to answer these questions, we have identified
specific assumptions that made our expectations for MBD in
this domain incorrect.

The paper is organized as follows. In the next section, we
present a brief description of the spacecraft fault protection
problem and common practice for addressing it, followed by
a brief overview of the Livingstone model-based diagnosis
and recovery system. We then consider Livingstone’s impact
on spacecraft fault protection practice, both in terms of the
impact we expected based on its capabilities and the impact
we have observed in the subsequent years. To understand the
discrepancy, we express the technology’s potential impact as
a product of expected value, cost and risk rather than simply
capabilities. For each of these, we identify characteristics of
MBD that hinder its adoption in the spacecraft domain using
the Livingstone flight experience and hypothetical application
of MBD to a more recent mission as examples. In the latter
case, we propose an estimate for the ideal maximum value
that MBD could provide for a mission, as well as a method
for reasoning about the expected value of the technology.

Finally, in Related Work, we discuss a small set of systems
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that are model-based, or pertain to diagnosis and recovery,
or have been fielded in operational use, our ultimate interest
being a system that is all three. In the Discussion we revisit
the question of potential impact by summarizing our own
experience with the cost, risk and value tradeoff for MBD, as
well as our understanding of why in the spacecraft domain
it has not enjoyed the same success as other model-based
technologies.

II. TRADITIONAL FAULT PROTECTION PROCESS

Before discussing MBD we briefly discuss spacecraft Fault
Protection (FP) for the purpose of comparison. The primary
purpose of FP is to ensure that anomalies or operational
problems encountered during operation of the spacecraft do
not result in permanent reduction in the spacecraft’s capabil-
ities or loss of the mission itself. As Neilson explains in an
excellent overview of the FP system for the Mars Exploration
Rovers (MER), FP is an engineering process that incorporates
robustness to faults into spacecraft hardware, software, sys-
tems engineering and operations [1]. All of these systems
are engineered to work together to reduce the likelihood that
any reasonably plausible contingency will result in permanent
loss of mission capabilities. This paper is largely concerned
with on-board software for active fault detection, isolation
and recovery. We note though that the on-board system is
just one aspect of the overall FP engineering process, and in
addition the on-board system for protecting the spacecraft is
typically a mix of hardware and software. Traditionally, the FP
engineering process is driven by fault modes, effects and crit-
icality analysis (FMECA). This process typically determines
the possible faults of a system or subsystem, some notion of
their likelihoods, and an analysis of the impact of each. If the
likelihood of a fault is deemed sufficiently high and the impact
sufficiently negative, the analysis would also include how the
fault would be detected and what the appropriate response
would be.

The appropriate response to a fault may depend upon the
phase of the mission. We use the term critical phase of a
mission to mean periods of a mission where the spacecraft
must take specific actions (a critical sequence) or loss or
serious degradation of the mission will result. For example
during the entry, descent and landing sequence each MER
rover entered the Martian atmosphere at over 10,000 miles
per hour. At specific times or altitudes it jettisoned a protective
shell, deployed airbags, and the like. Failure to execute a step
in this six minute sequence would end the mission. We say
the system must fail operational in that any failure that occurs
must be taken into account by the FP approach, for example by
switching between redundant subsystems, to allow execution
to continue. Accordingly, during development of the spacecraft
an enormous amount of attention is given to the precise
critical sequence the spacecraft will execute, which failures
are likely, how they will be detected, and how they will be
immediately mitigated. Since response must be timely, it must
be available on-board. This may involve something as simple
as a table mapping observed sensor values to commands that
should be issued in response, for example to switch to a

redundant backup. For very complex critical sequences on
large spacecraft, a much more elaborate method of determining
responses may be developed, such as for the Cassini orbital
insertion at Saturn [2].

In a non-critical phase, it is still possible to damage or lose
the mission due to a fault, but there isn’t the added constraint
of having to execute a critical sequence. Thus typical FP sys-
tems tend to focus on mitigating or postponing the impact of
the fault by changing the spacecraft’s state or behavior. Figure
1 illustrates a simplified FP process. In the first step, engineers
use FMECA analysis to identify situations dangerous to the
spacecraft (e.g. low voltage on the power bus), how they
would be detected, and how the spacecraft hardware, software,
ground system and operators should respond. The hardware
and software portions of this policy are implemented on the
spacecraft. In step two, when a fault occurs, on-board software
or in some cases hardware is triggered by on-board sensors
and invokes the proscribed response. In step three, if the policy
maps the sensor readings to a serious problem, the spacecraft
is often placed into a safe mode where the only actions taken
are those that maintain the spacecraft in a quiescent state until
communication can be established in step four. For example
on the MER rovers, draining the battery risks not being able
to heat the rover during the cold Martian night and not being
able to communicate with Earth when expected. The system
level MER FP includes a hardware battery controller that
disconnects the batteries should a serious hardware or software
failure begin to drain them. In this case, the system’s heaters,
solar panels, and flight software work together to ensure the
rover does nothing but stay warm and wake once during the
day to contact Earth using very few hardware and software
subsystems and minimal power. If the situation appears to be
less grievous or more localized, then a less drastic response
may be taken at first. On the MER rovers, subsystem behaviors
incorporate subsystem level FP [3]. If the rover’s arm draws
more than the allowed current during use, it is marked failed.
The arm behavior ignores any subsequent requests to use the
arm, and the rover driving behavior is disabled if the arm
is not stowed away. Routine communication with Earth and
other tasks that do not involve the arm continue as normal.
In step five, during the next possibility for communication
(hours to days depending on the mission) sensor values from
the spacecraft are downloaded so ground operators can inspect
the telemetry and debug the arm. In many cases, engineers may
send commands to carefully gain more information about the
spacecraft’s condition, or may attempt to reproduce the issue
on an Earth-bound copy of the spacecraft. In step six, when
the anomaly is understood, engineers may simply re-enable the
spacecraft, upload a software patch to deal with the issue, or
change operational procedures to allow the mission to work
around it. A process similar to this has protected the MER
rovers for over four years. A great summary of the anomalies
and faults encountered by the rovers in the first 780 sols
(Martian days) of operation is available [4].

The approach of safing the entire spacecraft or select sub-
systems when faults are suspected has the advantage that one
need not know exactly which fault is causing the operational
problem. If the rover arm exceeds an operational current limit,
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use of the arm ceases, which applies for a limitless number
of reasons the arm might be malfunctioning from a motor
short to a rock stuck in an actuator. Similarly, if the battery is
being dangerously drained, the flight software may shut down
its activities, but at some point if the situation persists the
hardware will effectively turn off the rover and restart it in a
fresh, quiescent state when solar power is available.

The above FP approach is to carefully engineer the robust
but minimal fail operational capabilities needed for critical
periods, and otherwise engineer hardware, software and oper-
ations so the spacecraft can be put in a safe state in response to
plausible anomalies. This characterizes a wide range of FP sys-
tems that have been flown. The remainder of this paper is about
experience gained attempting to improve upon this approach
using MBD technology. The intent was to provide greater
spacecraft autonomy and robustness, greater science return
from missions, reduced operations costs, reduced analysis cost
for a mission, and reduced flight software development cost.
The next section describes Livingstone and L2, two model
based diagnosis systems that have been flown as experiments
on-board NASA spacecraft as well as demonstrated on a
number of testbeds. The following section describes how
Livingstone was expected to provide the benefits described
above. Later, we describe why we believe these benefits were
not realized, and provide some analysis of where we believe
the problem lies.

III. THE LIVINGSTONE SYSTEM

Livingstone [5], [6] is a MBD system in the style of GDE
[7] and Sherlock [8]. By diagnosis, we mean the problem
of observing a mechanical, software or other system and
determining what failures, if any, its internal components have
suffered. By MBD, we mean diagnostic systems arising from
Computer Science or AI approaches where a generic software
inference engine is developed in the hope of addressing a
large class of diagnosis problems [9], [8]. Later, system
models that adapt the generic engine to a specific diagnosis
domain are created. Typically a model first describes the
kinds of components that comprise the mechanical system
and their individual behavior. For example, a valve may be

open and allow fluid flow or closed and not allow fluid flow.
Livingstone also includes a model of how each component
can be commanded between states. When in the open state,
a valve can be commanded to the closed state. However if
a valve is in the stuck closed state, commanding it has no
effect. Once the components are described, the model must
specify how they are interconnected. For example, consider
the Cassini main propulsion system in Figure 2, which was
used as a benchmark in the Livingstone papers. To avoid a
persistent confusion, we note Livingstone was run against a
simulation of Cassini for demonstration purposes and not as a
part of the Cassini mission. The system is operated by opening
valves to allow pressure from the helium tank to pressurize the
oxidizer tank and fuel tank. If additional valves are opened this
pushes fuel and oxidizer to exactly one of the engines, where
it is ignited to create thrust. Owing to Cassini’s decade long
mission, the system has many redundant paths between the
various tanks and a backup engine. Valves in parallel allow a
second path in case a valve sticks shut. Valves in series allow
a path to be turned off if a valve sticks open.

When run against a simulation of this propulsion system,
Livingstone’s task was to use its model to monitor the com-
mands given to the valves and infer if sensor readings (e.g.
pressure at various points in the system) were consistent
with the expected state of the valves. If not, Livingstone
would infer the most likely set of failures (e.g. valves stuck
open or closed) that explained the readings. One of the main
innovations of Livingstone is its ability to use the same model
and inference algorithm used for diagnosis to also infer what
set of commands would cause the system to move to a state
with a desired property. After a failure, Livingstone is able to
determine the smallest number of valves to open or close to
ensure oxidizer and fuel could reach one of the engines. Thus
Livingstone could automatically manage the configuration of
the propulsion system so that it always produced thrust when
desired even in the face of multiple failures occurring over
time.

Figure 3 illustrates Livingstone’s operation at an idealized,
schematic level. The generic Livingstone engine is given the
high level model of the components of the spacecraft and
their operation. During operation, Livingstone is fed the stream
of commands that are being given to the spacecraft and the
readings from sensors embedded in the spacecraft hardware
(e.g. switch status bits, temperature sensors, pressure trans-
ducers, etc.). Livingstone uses the model of the spacecraft’s
components and the command stream to predict the values of
the sensors that should result from the commands assuming
no components are failed. If there is a discrepancy between
the predicted and observed sensors, then a failure is assumed.
Livingstone uses the model of the components to simulate
different combinations of failures. It uses a diagnosis algorithm
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to quickly focus on the most likely combination of failures
that would predict the sensor values that are being observed.
This combination of component failures is the diagnosis. To
recover from a failure, Livingstone hypothesizes that a desired
property is observed (e.g. engine is receiving fuel). It uses
the same predictive model and search algorithm to quickly
infer commands (e.g. open sets of valves to route around a
blockage) that would “predict” the desired property and thus
mitigate the failure. Thus it is capable of detecting, identifying
and also recovering from off-nominal conditions. With a
model that includes commands, it can monitor execution of
commands, detect anomalies, diagnose failures and provide
recovery actions for complex systems such as a spacecraft.

IV. EXPECTED BENEFITS

The promise of a system like Livingstone flows from the
concept that in flight, it would use a model to infer the system-
wide behavior given any combination of nominal and failed
components and any sequence of commands. We envisioned
a wide range of benefits if instead of manually reasoning
through system wide interactions under a fixed set of fault
scenarios we could simply describe the local behavior of
components and allow an MBD system to infer the rest. Figure
4 conveys where we expected the MBD process to deliver
these benefits versus FP. In the first step, rather than pre-
designing responses for a fixed set of system-level failures we
describe the nominal and (perhaps multiple) failure behaviors
of each type of component and how the components are
interconnected. The user models that a valve can be open
and allow fluid flow, or closed and stop fluid flow, or stuck
open or stuck closed, and can arrange valve combinations
far more complex than the Cassini model shown. Step two
represents routine operation of the spacecraft with commands
and sensor values monitored by Livingstone. In step three
Livingstone would detect deviations from expected sensor
values. In step four rather than waiting for intervention from
the ground, Livingstone would immediately infer the state of
the system even in the face of multiple valves sticking closed
or open. In step five, Livingstone would immediately perform
the system-wide reasoning needed to start and stop fuel flow
to the engines (or achieve any other state described by the
model) from whatever state it had inferred for the system. Thus

the spacecraft would continue performing useful activities by
finding alternative ways to perform them. We next describe
some of the expected benefits in slightly more detail.
• Reduced FP implementation costs

Rather than develop a custom FP and safing system, the
spacecraft would employ a re-usable diagnosis engine
that inferred the spacecraft’s state and recovery responses
on the fly from component models.

• Significantly lower analysis costs for critical phases
The fail-operational response needed during a critical
phase would be inferred from the model on-line during
execution of the critical phase. Thus, we would reduce the
manual analysis usually needed to determine how sub-
systems would interact during an anomaly and engineer
a proper fail-operational response that could be statically
encoded.

• Greater robustness than traditional FP
The on-board diagnoser would infer diagnoses of double
and triple failures and suggest workarounds, where a
traditional FP might include pre-computed responses for
single failures or certain critical anomalies involving
multiple failures.

• Greater mission return
By inferring fail-operational responses for any state of
the spacecraft, rather than manually engineering them
for specific critical sequences, we could fail operational
even in non-critical periods. During a fault, the MBD
system would diagnose which component was failed. It
would return to an operational state by reconfiguring
redundant systems, resetting components, or canceling
only activities involving failed components. Operations
would resume with no need to wait for intervention from
the ground, increasing productivity of the spacecraft.

• Reduced mission staffing levels and operational costs
Since the MBD system would resolve many anomalies
without intervention from the ground, fewer expert engi-
neers would be needed during spacecraft operations.

V. FLIGHT EXPERIENCE

A large number of talented people developed Livingstone
and L2 applications for a wide variety of systems, which
allowed us to gain the experience upon which this paper is
based. Table I lists MBD applications developed for simula-
tors, testbeds and two flight experiments, along with the year,
and the number of different failures modeled. Where available,
the number of person months spent developing the Livingstone
model and person months developing the entire application
(models, signal conditioning code, integration, etc) is shown.
Note that for the flight experiments, these numbers represent
the additional cost of deploying Livingstone for a subset of
the spacecraft systems. As discussed in subsequent sections,
our observation is Livingstone performs a task somewhat
orthogonal to FP, and these costs were not offset by any
reduction in development of a FP system.

Livingstone was chosen in 1996 to be a part of the Remote
Agent spacecraft autonomy architecture [10]. In May 1999
it was flown on the DS-1 spacecraft as a technology experi-
ment [11]. The first author gained direct experience with MBD



SPECIAL ISSUE ON MODEL-BASED DIAGNOSIS: FACING CHALLENGES IN THE REAL WORLD GUEST EDITED BY PROVAN, STRUSS, DEKLEER, AND BISWAS5

Diagnostic
Modeling

Feed
Sensors to
Model

Recovery
Generated
On Board

Resume
operations

Detect
Anomaly

Fault
Identified
On Board

Less Analysis Cost
Less Implementation Cost
Handles a wider range of multiple failures

Engineers
design
Fault

Protection

OnBoard
SW

Detects
Anomaly

Halt and
Run Safing
Sequence

Wait for
communication

Downlink
Sensor
Data

Engineers
perform
Diagnostic
Analysis

Resume
operations

Wait

FP

MBD

Immediately resume operations
Greater mission return
Less risk of spacecraft of
bleeding to death

Uplink
Recovery or
Change Ops
Procedures

Fig. 4. Expected benefits for MBD versus FP.

TABLE I
LIVINGSTONE AND L2 APPLICATIONS

System Model Types
Effort Effort of

Type Domain Subsystem Year Months Months Components
Simulator Cassini Propulsion Liv. 1996
Flight Exp DS-1 Attitude control, switches Liv. 1998 96 36 12
Testbed ISRU Chemical reactor Liv. 1998 96 32
Testbed Interferometry Optical bench Liv. 1999
Simulator micro spacecraft Liv. 2001
Simulator rover Drive system Liv. 2001
Simulator X-34 Propulsion L2 2002 26
Simulator X-37 Electronics L2 2002 9 5 18
Flight Exp Earth Orbiter 1 Instruments, cameras L2 2003 12 2.8

technology by doing Livingstone development, modeling of
the DS-1 spacecraft, and participating in mission operations
during the experiment. Livingstone and the other components
of the Remote Agent software were uploaded to DS-1’s
on-board computer via the Deep Space Network of radio
antennas. The software executed on the DS-1 flight computer
for a 20 hour test and a 6 hour test. During these tests, the
Remote Agent software ran on top of the existing DS-1 flight
software, which included a FP system. The flight software fed
live readings from the spacecraft’s sensors to Livingstone to
drive diagnosis. In addition, to ensure Livingstone would be
exercised even if no failures occurred, Livingstone was fed
simulated sensor readings consistent with a set of four pre-
determined failure scenarios that had been modeled. These
were failure of a switch position sensor, camera power switch
stuck on, science instrument not responding and thruster stuck
closed. In the first case, Livingstone correctly ignored the
sensor, and in the remaining cases recommended recoveries
of re-trying the command, power-cycling the instrument, and
switching thruster control modes, respectively.

Subsequently, we developed the follow-on L2 system, with
several technical improvements [6]. With L2 and the associated
modeling tools, our experience applying model-based diagno-
sis and recovery systems to spacecraft greatly expanded. L2
was flown as a technology experiment on the EO-1 spacecraft,
again operating on top of the existing FP system. L2 was
activated on EO-1 for a total of 143 days in 2004 and 2005 and
diagnosed 13 simulated failures [12]. Flight experiments for
the X-34 and X-37 spacecraft also were developed, though
those vehicles were never flown [13]. In addition to these

flight experiments, Livingstone or L2 was applied to a Mars in-
situ propellant production testbed (ISRU) at Kennedy Space
Center [14], a testbed for the Space Interferometry Mission
at the Jet Propulsion Laboratory, the Bio-Plex Mars habitat
testbed at Johnson Space Center, a testbed for the PSA micro
spacecraft [15], and a rover testbed [16]. These applications
tended to start with a set of known diagnostic scenarios
and focus upon the relative ease or difficulty of causing
the particular diagnosis formalism of Livingstone to diagnose
them. While this is an interesting topic it’s beyond the scope of
this paper. The Hyde system [17] is one of several systems that
use a hybrid automata model, and which describes the specific
areas of expressivity it seeks to improve over Livingstone.

VI. ANALYSIS OF IMPACT

A great deal was learned from the efforts of the many
talented teams that used Livingstone. In retrospect though, it’s
fair to say that MBD did not transform, or even impact how
FP is done on NASA missions. To our knowledge, no NASA
spacecraft has used Livingstone or any system like it as a part
of its FP system, and as of this writing there have been no
additional flights beyond the research-funded DS-1 and EO-
1 experiments. This begs the question of why we did not
observe the wide range of benefits we expected from applying
model-based diagnosis and recovery to spacecraft operations,
and why there was no ’mission pull’ and adoption of the
technology.

It is tempting to explain the lack of penetration by imagining
missions are averse to incorporating new technologies. Cer-
tainly revolutionary approaches are taken all the time. Consider
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Fig. 5. Complications of providing value with MBD.

the airbag landing system used on PATHFINDER and MER.
Perhaps there is some hesitance to use unfamiliar or model-
based software. Consider the case of planning and scheduling
technology. Coincidentally, Livingstone flew with the HSTS
planner during the Remote Agent experiment, and L2 flew
with the CASPER planner on EO-1. At a high level, planners
are similar to Livingstone in that they comprise a generic
inference engine and a model used to adapt it to a problem.
A planner chooses actions to take to achieve a goal, rather
than failures to explain a symptom, but the algorithms and
models are similar in the grand scheme of things. As described
in Related Work, HSTS evolved into ground-based tools that
have generated thousands of plans for the MER rovers and
are scheduled for follow on missions. CASPER became an
operational tool on EO-1, continuing to run on-board for years,
plan over 100,000 goals to date, and save millions of dollars in
operating costs [18]. Thus missions are willing to adopt new,
model-based software technologies.

As technology developers, there is a natural tendency to
focus on the capabilities of a technology, such as MBD’s
ability to find diagnoses and make recoveries. The decision
by a mission to adopt a technology is a combination of
the expected value, cost and risk given the characteristics of
that particular mission. The three are intertwined. A mission
may make a significant investment to buy down risk, as
illustrated by the inclusion of a backup engine on Cassini.
Conversely a useful mission feature that provides value may
be abandoned if the cost cannot be kept under control. In
these terms, we believe it’s relatively easy to understand the
lack of penetration of model-based diagnosis and recovery. We
provide an overview before a detailed analysis.

Consider the non-critical phases of a mission and the
proposal to add fail operational capability. Figure 5 illustrates
some of the complications standing in the way of realizing the
benefits as we imagined them. First, rather than eliminating
analysis costs in step one, our experience was that a diagnostic
model requires the same type of FMECA analysis as writing a
traditional FP system, and in greater quantity. The additional
analysis effort comes from the fact that engineers are forced
to work out recovery strategies in detail beforehand, and
once derived all of this fault propagation, failure detection

and recovery analysis must be encoded in a single consistent
model. We next note that spacecraft typically go into safe
mode relatively rarely, intrinsically limiting our cost/benefit
equation. In steps three and four, we note the value of a
diagnosis and recovery capability captured by our models
is only realized if a failure is correctly diagnosed and a
recovery more productive than safing is achieved. Surveying
real mission anomalies reveals that few are failures that a priori
we would have modeled and been able to recover.

Part of this is due to the enormous space of possible
failures versus the limited budget and expressivity we have
for developing a model. In addition, the strength of MBD
lies in its use of the system design to infer diagnoses and
recoveries. However, spacecraft typically are heavily analyzed
and tested to ensure they perform robustly within the design
parameters. When a failure occurs it often arises from in-
teractions between subsystems or the environment that were
not explicitly captured in the design assumptions. In steps
five and six of the FP process, we note that when failures
do occur, operators typically need to carefully understand
what has occurred and what assumptions about the spacecraft
design have failed. They then upload commands to address the
immediate situation and often make a change to operational
rules for the spacecraft before proceeding. Thus we will
argue the expected value provided by MBD during non-critical
phases is not high, especially when considered relative to the
cost and risk involved.

Consider the critical phases of a mission and the proposal to
use MBD and recovery to provide the required fail operational
capability. Typically a critical phase is minutes to hours long,
involves a known sequence of events, and is critical in the fate
of a mission costing hundreds of millions of dollars. Added
value and reduced cost from employing MBD have not been
clearly demonstrated, but they would have to be incredibly
high to offset the risk of not being able to verify in advance
exactly how the spacecraft was going to respond to plausible
scenarios during this short portion of the mission when an
incorrect response will result in mission loss. Thus we will
argue the risk of MBD during critical phases is high, and the
value is unclear. The expected net value of using MBD over
the life of a mission depends upon the expected value that the
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technology provides, minus the additional risks of using it and
the cost of deploying it. In the next sections, we discuss the
pressures on expected value, cost and risk we believe hamper
the use of on-board MBD and recovery systems. We support
our analysis using the MER and DS-1 missions as examples.

VII. LOW EXPECTED VALUE

During Livingstone development we focused upon the
promise that Livingstone could provide value to a mission, for
example by potentially reducing the need for the spacecraft
to enter a safe state. There was no attempt to quantify the
magnitude of that value, leading us to overestimate it. In
retrospect, in order for a MBD system to be exercised and
provide value, a failure must occur, the MBD system must
correctly diagnose the failure and it must suggest a useful
response. It is the likelihood of these events that will determine
usefulness of MBD. As with an insurance policy, the value
actually provided by an MBD system during a mission isn’t
known until after events have unfolded and the mission is
complete. Unfortunately, we know of only two cases where
an MBD system has been flown, which we discuss below.
We then discuss methods for estimating the expected value if
MBD were hypothetically deployed on a mission, and why we
estimate it to be in general quite low.

During the two day Livingstone flight experiment and the
143 day L2 flight experiment, none of the modeled fail-
ures of the spacecraft occurred. Two unmodeled failures in
experiment-related software did occur and interfered with the
flight experiment of Livingstone on DS-1. One failure we had
not even considered modeling, and the other was explicitly
declared out of scope during the modeling effort. Thus the
only two actual failures known to have occurred during a
Livingstone flight experiment were not identified or recovered
from [11]. The L2 flight experiment also generated 14 false
positives, diagnosing modeled failures when none occurred.
Thus in these two very short experiments, this particular MBD
system provided no operational value.

These two data points involving a particular MBD technol-
ogy are too few to draw any conclusions about the actual value
provided by MBD for spacecraft applications. However, like
an actuary, we can compute the expected value MBD would
provide to other missions from the product of the likelihood of
the events leading to MBD operating correctly and the value
of it doing so. To estimate the expected value for a mission,
we then need to estimate the following quantities:
• the likelihood of a failure actually occurring (≤ 1)
• the likelihood of correctly diagnosing the failure that

actually occurs (≤ 1)
• the likelihood of providing proper response (≤ 1)
• the value of generating the correct diagnosis and response

on-board (timeliness, reduced operations cost)
To provide a concrete example of how we would reason

through this analysis for a mission, Table II summarizes
Neilson’s excellent overview of the anomalies in MER op-
erations that occurred in the first two years of commanding
two rovers on Mars. Note that Livingstone was not used on
the MER mission, it is simply a well-known mission whose

fault protection system and performance have been thoroughly
described in the literature. Table II captures the anomalies
that caused the two rovers to enter a fault response during
approximately 1550 days worth of operations. The first column
is a short name we have given to the anomaly. The second
denotes whether the problem was due to software, hardware
or interactions with the environment. We presume that most
MBD applications do not apply to dynamic interactions with
the environment, though this is incidental to our analysis. The
third column denotes how many days passed between when the
anomaly occurred and the subsystem involved in the anomaly
was put back into routine operations. Note in many cases other
non-effected subsystems were put back into operation sooner.
The final column describes what response was developed by
the MER anomaly analysis team.

This table captures anomalies during non-critical portions
of the mission. In this case, we define the ideal value of
having on-board diagnosis and recovery to be equivalent to
the amount of operational time lost waiting in safe mode
after an anomaly. This is the amount of time that would have
been saved if every anomaly was resolved immediately. A
second term in expected value is the rate of failure within
on-board spacecraft systems, which we expect to be quite low
in general. This is important because the product of our value
term and this rate, conceptually the expected amount of time
the spacecraft spends in safe mode, is an upper bound on the
value of on-board recovery, representing the ideal the case
where for every anomaly our MBD system produces a correct
diagnosis and a productive recovery. This bound is simply the
nature of attempting to provide value with on-board diagnosis
and recovery.

Looking at Table II, the small number of hardware and
software related anomalies suggests that the rate of anomaly
occurrence is quite small. The amount of time spent on
anomaly recovery was about 2% of the operational time,
including a significant amount of time responding to environ-
mental problems such as being stuck in soft sand. Thus for
MER we know the amount of potential operational time spent
in safe mode turned out to be 2% of the operational time of
the rover. This represents the ideal upper bound of the value of
using MBD to immediately recover during routine operations
if every anomaly could be correctly resolved autonomously
on-board.

The reduction from ideal MBD performance to the expected
value is determined by our estimates of the likelihood that a
given MBD system will correctly diagnose these anomalies
and the likelihood that it can provide a productive recovery.
Looking at the failures in Table II the first question to
consider is out of the enormous space of component failure
modes, what is the likelihood that a priori our models would
have covered diagnoses and recoveries for these failures?
The second question is what is the likelihood that our au-
tomated software would have produced recoveries that were
both correct and more valuable than simply shutting down
subsystems and waiting for ground analysis as the existing
MER system does? Since MER did not use an on-board MBD
system, discussing the likelihood of a correct diagnosis or
recovery may be considered conjecture. We believe one can
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TABLE II
MER ANOMALIES

Brief Days of
Description Type Analysis Recovery process
Wheel drive HW 4 Experiment to characterize capability of wheel
actuator Warm actuator before use

Drive backward dragging wheel
Steering current HW 4 Experiment to characterize source of current increase

Use ’K’ turns to avoid steering failed wheel
Shoulder actuator HW 17 Experiment to characterize shoulder motor degradation
current Characterization of future arm failure on driving

Change stowage policy to minimize thermal cycling & forestall failure
Heater stuck on HW ∗ Determine that survival heater was stuck on

∗ Operations continued while problem was addressed
Implement policy to remove batteries from power bus at night
Rely on solar power to wake rover at dawn
Trade off power savings vs. degradation of instrument due to cold

Late wakeup/ Env 1 Solar panels woke up rover slightly late due to dust storm
dust storm Rover missed time to start sequence, waited in standby mode

Plan future sequences to start at least 1 hour after expected wakeup
Rock stuck in Env 7 Current spike explained by seeing rock in the wheel in imagery
wheel Several days of careful driving to dislodge rock
Stuck in sand Env 40∗ Imagery suggests rover is not moving, wheels 70% buried in sand

∗ Continue all non-drive activities on Mars during analysis
Set up testbed with similar consistency soil, practice escape strategies
Carefully drive out using escape strategy
Augment driving policy to avoid wheel embedding on future drives

Flash file system SW 14 Overloaded file system table prevents creation of new files
Rover continuously reboots

anomaly Understand what on-board FP system is doing, what is causing reboots
Send command to rover to start up without file system, gain control of rover
Determine issue with file system. Clear and rebuild file system
Carefully manage production of files
Return to nominal ops. Later upload patch

Startup race condition SW 2 Lose communication window every few hundred sols
Added short keep out period after startup

Imaging race SW 2 Imaging HW shut down while sequence still reading data from HW
condition Shut down sequence fixed to halt imager sequence before HW shut down
Corrupt command SW 6∗ Solar conjunction test of corrupt commands overloads command handler

∗Normal commanding resumed after solar conjunction over
Variable eval SW 4∗ Same global defined in two sequences running in parallel, result in fault
exception ∗ Includes idle weekend

Do not run two scripts that define same global
Upload fault SW 2 Initial uplink through orbiter experiment overloaded CPU

Pad uplink file, limit size

get a sense of the (small) magnitude of these likelihoods from
columns three and four of the table. These reflect the amount
of time the engineers who built the rover, flight software and
operations system spent carefully probing the rovers with small
experiments and then deriving a recovery and new operational
policy that would accommodate the failure and the rover’s
interaction with the environment. We believe that the MER
pattern of short, infrequent bursts of extremely careful analysis
indicates the effective value of MBD would be significantly
less than adding 2% to the rovers’ operational time.

In general, we believe the likelihood of failure is low for
operational spacecraft, meaning even the potential benefit for
MBD is limited. In addition, we consider the likelihood of
correct diagnosis and recovery to be low, further lowering
the expected value of MBD. MBD-friendly situations where
combinatorics and propagation of information are the issue in
generating diagnoses and recoveries, as was initially suggested

by Cassini’s 27 valve propulsion system and its 227 configura-
tions, do not appear to be the driving problem in spacecraft FP
and anomaly resolution. For the types of applications we are
familiar with, failures that do cause loss of operational time
are typically complex, unexpected and break the modeling
abstractions used to develop the system.

Consider the failure of the Galileo antenna to deploy or
the MER rover rebooting due to flash problems. These types
of problems typically require detailed analysis, creativity and
validation before returning the spacecraft to an operational
state. Thus for the missions we’ve considered in detail (all
unmanned, deep space missions) we would assign a low
expected value to the use of on-board model-based diagnosis
and recovery. We next consider risk and cost.
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VIII. NON-TRIVIAL COST INCREASES

During Livingstone development, we projected future mis-
sions would enjoy substantial savings by eliminating the need
to write a traditional FP system or to perform the system-level
analysis done to determine the correct response to critical,
mission ending anomalies. Much of the work previously
done through system level analysis would be done through
inference. Costs would largely consist of the effort needed to
encode models for the MBD system, which would be reduced
via graphical modeling tools developed with Livingstone.

We now believe that use of MBD adds significant analysis,
development and testing costs. In retrospect, use of a MBD
system does not eliminate the need of a FP system, and thus
does not eliminate that source of analysis costs. Creating the
models required for an MBD system also requires significant
analysis specific to this usage. Unlike traditional approaches,
the value proposition of MBD also promotes performing a
significant amount of “speculative” analysis for a range of
non-critical failures that do not strictly need to be completely
analyzed a priori. Finally, our experience is the envisioned
MBD functionality adds a significant integration and testing
effort to production of spacecraft flight software. We consider
each of these factors in turn below.

We don’t expect use of MBD to reduce the need for
analysis related to FP because in retrospect diagnosis and
FP are not equivalent. FP is a system engineering process
that impacts the design of hardware, software and operational
procedures. It must ensure, for example, if any hardware,
software, environmental or operational problem is draining
the spacecraft’s batteries, the combined hardware, software,
operations system and documented operator procedures have
the maximum likelihood of stabilizing the situation before the
vehicle is lost. This is a much broader problem than that of
on-board component-level diagnosis and reconfiguration of the
spacecraft. In addition, the ability to compute component-level
diagnoses is often neither necessary nor sufficient to ensure
spacecraft safety. The FP scheme typically identifies only
faults (e.g. battery voltage is low) used to find a pre-planned
response that is meant to safe the spacecraft or continue a
very specific critical sequence over a large space of problems
induced by the hardware, software or environment. For exam-
ple, the FP design might place all non-essential devices on
a separate power bus, which is simply turned off if there is
any power-related anomaly. Thus in the flight experiments, it
was necessary to employ a FP system which did not need to
do detailed diagnosis, while running Livingstone, which did
not perform system FP. Since MBD as formulated does not
address system FP, we didn’t see any demonstration that use
of MBD technology eliminated or significantly reduced anal-
ysis costs for developing the basic fault protection capability
missions require. In the related work section, we do discuss
efforts to use MBD-related technologies in early design and
validation of more traditional FP systems.

We imagined future missions might use the ability of model-
based diagnosis to propagate behavior of individual compo-
nents across a system model to generate recovery responses
on the fly or before flight, meaning the analysis costs of

a mission using MBD would drop. Two issues are where
the models come from and what analysis do they eliminate?
MBD requires a diagnostic model which is different than the
simulation models used in routine spacecraft development. The
DS-1 experience was that it’s necessary to know the aspects of
each component relevant to failure, the plausible failures to be
modeled, how they manifest themselves locally, local actions
that can be taken, and so on in order to scope and write a model
that can be used for anomaly detection, identification and
recovery. Our experience was therefore that additional failure
modes and effects analysis was needed to drive diagnostic
modeling, rather than a model existing through some other
process and then being used to replace traditional analysis.

The need for additional analysis is exacerbated by the
proposition that an MBD system provide value by au-
tonomously recovering from non-critical anomalies. Consider
that the traditional fault protection strategy reserves the most
detailed, a priori analysis only for critical sequences and the
process of safing the spacecraft. The majority of possible
faults simply trigger the safing system without diagnosis to
the component level. Since further analysis is performed post
hoc, it’s done only for those failures that actually occur,
and without the need to codify the diagnosis into a model.
The main value ascribed to MBD was that it would do
detailed diagnosis and recovery autonomously. This means
the analysis and modeling needed to diagnose and recover
failures, and the non-trivial task of encoding those capabilities
into software, must be done a priori, before we know which
failures will occur. Thus we perform the detailed analysis and
modeling needed to automatically recover from many non-
critical failures that most likely never occur and do not strictly
require an immediate response in the unlikely event they do.

Two overlooked additional costs are integrating the model
with the spacecraft and testing. Signals generated by the
spacecraft’s internal sensors may need to be conditioned
to remove transient disturbances or abstracted to match the
diagnostic algorithm. Since we are attempting to use all avail-
able sensors to autonomously identify failures before abrupt,
system-level effects are seen, the Livingstone experience is
this can represent at least as much work as modeling. Thus
we believe integration costs are higher than for FP systems
that typically focus on anomaly detection without isolation and
use a smaller number of system-level measures. With respect
to testing, one of the main characteristics of Livingstone is
the ability to generate novel combinations of diagnoses and
recoveries from the possible diagnoses and recoveries for
individual components. However, it was still necessary to work
through the possible failures, how the failure would propagate
through the system, and how Livingstone would respond, then
validate the expected behavior through testing. Given the space
of possible responses Livingstone could generate, the issue of
how to validate it at a reasonable cost was an issue during
experiments and remains an issue.

As a point of interest, Table I lists approximate development
costs for Livingstone applications where it was possible to
make an estimate. On the DS-1 experiment, three people
worked part time for a total of approximately 36 person-
months developing a model of 5 subsystems of the spacecraft.
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Approximately 96 person months were spent including the
model and all of the integration and sensor signal conditioning
necessary to run on-board the spacecraft. For the EO-1 expe-
riment, a total of 2.8 person-months were spent modeling and
approximately 12 person months was invested in integration
and signal conditioning. It’s important to note that these figures
are not the cost of the FP system, as Livingstone alone was
unable to provide FP for the spacecraft. These are the costs
to develop a diagnosis and recovery system for combinations
of failures in specific subsystems.

In summary, we believe the proposed use of MBD repre-
sents a cost increase rather than savings. The need to develop
a separate set of component-level diagnostic models adds cost,
and does not significantly offset FP analysis costs. The desire
to have, a priori, a system that can autonomously diagnose and
recover a spacecraft even for non-critical anomalies appears to
introduce additional detailed analysis, model encoding, signal
conditioning and testing that is not necessary if the spacecraft
is simply put in a safe mode when possible. We believe
the approach is also at a cost disadvantage due to the more
complex testing and verification requirements necessary to
ensure any of the additional diagnoses and novel recoveries
such a system might generate during autonomous operations
would not endanger the spacecraft.

IX. INCREASED RISK

Initially, we imagined that MBD would reduce risk of
mission loss by generating diagnoses and recoveries on the fly
and increasing the range of situations over which specialized
fault responses were available. Customers were instead con-
cerned that the more complex response of an MBD system
would itself cause an anomaly or compound a failure, and
this would have an impact in terms of operational complexity
during anomalies, lost science, or loss of mission capabilities.
Reducing risk to a level acceptable to mission customers
quickly emerged as an open issue that is key to future use.

We can divide sources of this perceived risk into three
categories: increase in risk due to the fact that the MBD system
is capable of a wider range of responses and generates them
on the fly, increase in risk from continuing to operate after
an anomaly when not strictly necessary, and the operational
impact if the actions of an autonomous on-board recovery
system must be understood and potentially mitigated when
the spacecraft has ceased operating according to design and
the ground team must intervene.

Missions considered that MBD would increase risk because
of the increased complexity of the software’s response and our
inability to concisely characterize, enumerate and validate the
range of diagnoses and responses the system might undertake.
Rather than engineer a small number of safing responses that
are as broadly applicable as possible, MBD seeks to generate
recovery responses that are as specialized as possible on the
fly. It’s interesting to note that this does not necessarily imply
that an MBD system responds to a broader range of anomalies,
simply that it responds in a more specialized fashion to each.
This means there are far more variations in spacecraft response
based on its state, and the full set of conditions and responses

could not be enumerated and tested. In addition, the purpose of
MBD is to propagate information across the modeled system
to allow variations in response. Thus it can be difficult to
even concisely describe how small, non-local variations in
the space of inputs will impact the response, and difficult to
argue that a specific set of test cases provides good coverage
for validation. Combating this perceived increase in risk is a
challenge since the ability of MBD to respond with a far wider
range of behaviors than traditional FP is both its selling point
and the source of concern that the system will do something
unpredictable. Some work has been done to apply model
checking approaches [19] and to generate static representations
that are simpler to validate [20], but this remains a significant
issue for adoption.

An additional increase in risk comes from the proposal to
continue to operate the spacecraft via a recovery generated
on-board when it is possible to safe the spacecraft and await
expert analysis. Consider the three wheel problems of Table
II, Wheel drive actuator, Rock stuck in wheel, and Stuck
in sand. One can imagine mis-diagnosing which failure was
occurring and applying the recovery meant for another (e.g.,
attempting to drive in circles when stuck in sand rather than
when a rock is in the wheel) could permanently trap or
damage the rover. We don’t have examples of Livingstone
mis-diagnosing a spacecraft failure as none occurred during
the flight experiments, but we do have examples of false
positives (indicating a failure when none exists) during the
EO-1 experiment. Thus it’s important to keep in mind that
MBD may cause us to execute actions that are inappropriate
for the true state of the spacecraft. This risk of exacerbating
a failure through continued operation rather than safing is one
of the items we are asking missions to trade against in order
to gain the small expected value estimated in the previous
section.

Note the impact is not just potential loss of mission.
Having specialized, generated responses to anomalies may
make it harder and more costly to determine what exactly
the spacecraft believes it is doing should something go wrong
and mission controllers need to intervene. This is hard to
characterize exactly, as we don’t have good examples of a
model-based FP system resolving an anomaly in operations,
or of it needing assistance or intervention from the ground.
We experienced a little of this in the Remote Agent Expe-
riment, due to actual, non-diagnosed anomalies during the
experiment [21]. It may be better to consider how difficult
it is to debug anomalies from millions of miles away even
with (comparatively) simple safing and recovery actions, as in
the FLASH anomaly in the Spirit Mars rover [22]. For the
Livingstone flight experiments, risk was acceptable because
the MBD system operated on top of a complete, separate fault
protection system which protected the spacecraft. On DS-1,
for example, the flight software included a FP system that
monitored the spacecraft for indications that any occurrence,
including commands given by Livingstone, were putting the
spacecraft in a risky situation. The FP system would then
stop all commanding of the spacecraft and put the spacecraft
into a safe mode to await contact from mission controllers.
In addition, Livingstone’s communication with the spacecraft
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was through a filter which ensured Livingstone could only
send specific commands which had been analyzed for safety.
If the underlying fault protection system were activated, that
filter would be closed and Livingstone would be terminated.

In an unforgiving environment such as space, Livingstone’s
ability to provide novel diagnoses and recoveries to failure
combinations we had not explicitly considered was far less
important than being able to verify exactly how it was going to
respond in the most likely and most critical anomaly situations.
Guarding an MBD system with a traditional FP system and
restricting the commands it can give is one approach to
bringing it to the level of predictability needed to convince
mission stakeholders the spacecraft will not go in to an unsafe
state. This strategy was appropriate for experiments whose
purpose was to show the technology could be flown. In routine
operations, it would tend to undermine the cost and value
arguments of using MBD. If MBD technology, or to an extent,
any autonomous on-board technology, is to make an impact
on operations, we believe this open question of predictability,
validation and risk must be addressed regardless of what the
proposed value is.

X. DISCUSSION

In this paper we have discussed the expectations for model-
based diagnosis and recovery systems such as Livingstone and
why we believe not all of those expectations were met. We at-
tempted to lay out the basic cost/benefit drivers in a domain of
interest (unmanned spacecraft) and our understanding of why
model-based diagnosis and recovery has found relatively little
traction. We can grossly characterize the common practice
in FP to be identifying those contingencies where an active,
specific response to anomalies must be made (e.g., loss of a
motor during an orbital insertion) and providing identification
and response to those states. In other anomalous conditions,
the spacecraft is safed and engineers diagnose the problem post
hoc. For the missions we’ve considered, this approach seems
to provide lower risk and more than adequate value in terms
of anomaly response when compared to MBD. In addition we
have not yet developed or seen an argument or demonstration
that the total analysis, development and testing cost for an
MBD-based system would be lower than those based on the
common practice.

During non-critical mission phases, the net value of having
on-board diagnosis and recovery is low since we are free to
simply put the spacecraft into a safe mode and only then
invest resources attempting to find a diagnosis or response.
During critical phases (as well as non-critical) the real need
to circumscribe and validate the responses of the FP system
decreases the proposed value of MBD’s ability to generate
novel responses, while increasing its testing and analysis costs
in an attempt to contain risk. We also believe the key questions
of how on-board, component-level diagnosis fits in with and
adds value to the broader task of fault protection engineering,
and how MBD technologies would reduce fault protection
costs remain open. Thus we believe it is difficult to justify the
use of on-board, generative diagnosis and recovery systems
like those we have been involved with based on cost, risk or

value, at least for the type of missions with which we are
familiar.

We can also summarize our analysis of MBD for spacecraft
by noting that model-based diagnosis and recovery is a “deep”
strategy. For a given failure, we incur cost to automatically
generate the most specific diagnosis and most complete re-
covery we can, relying heavily upon our diagnostic model,
current sensor readings, and our inference algorithms. The
design of a FP system, generally speaking, takes a “broad”
strategy. We find a response involving the spacecraft hardware,
software and operations team that covers the maximum num-
ber of contingencies regardless of underlying cause, making
the minimal number of assumptions about what systems on
the spacecraft are operating as designed and restoring the
minimal functionality needed for spacecraft survival. We can
easily construct specific scenarios where, assuming the model
holds, the response of an on-board MBD system is more
powerful and even avoids loss of the spacecraft. However, in
real operations where the likelihood of any particular failure
is low, the space of possible failures is enormous and the
correctness of a model once failures occur is suspect, the broad
approach is superior.

It’s often proposed that very ambitious missions, such as
a penetrator to melt through Europa’s icy shell, will require
advanced on-board autonomy in the style of MBD. This
implies the mission design is such that the credible risks of
losing the spacecraft would be complex or numerous enough
that they could not be reasonably characterized and a policy
developed a priori, so that on-board inference of specialized
responses would be necessary. For such a mission to be
deemed feasible and worth a risk in the billions of dollars,
and not simply deferred or re-designed, MBD would need
to be seen as buying down an enormous amount of risk,
rather than introducing it. This would require dealing with the
issues of verification, characterizing coverage and behavior,
and reasoning from a model that becomes incomplete during
failures.

The ideal application for MBD technology would be a
system where concise, component-level models of nominal
operation and failure modes are fairly easy to encode to reduce
cost, and are not likely to be grossly violated during failure
(e.g. components not linked in the design do not influence each
other under failure conditions), so the likelihood of reacting
properly during failure is high. Though made of easy to
model components, the system would need to have enough
combinatorial complexity to allow MBD diagnosis algorithms
to provide leverage. Two such areas might be modular robotics
[23], where the functionality of a machine is achieved by
re-configuring tens or hundreds or thousands of identical
very simple machines, or autonomic computing [24], the
task of autonomously managing networks of communication
and computation equipment, where there is a very strong
abstraction between the functionality of a component of the
network and the underlying hardware.

This is not to say there aren’t ways to make MBD more
attractive to spacecraft missions. One theme is to use MBD
to assist people with ground-based diagnosis and recovery.
As with the Eureka system described in Related Work, one
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challenge is how a MBD system would assist domain ex-
perts in the kind of unanticipated anomalies that they find
challenging. One potential answer is to move from a focus
on automated diagnosis to mixed initiative (human-in-the-
loop) use of diagnosis technology in both the development
of broad FP systems and in the process of diagnosis during
an anomaly. By analogy, in mixed initiative planning [25]
rather than an autonomous on-board system generating and
executing a plan, planning software assists a human expert
in developing a plan for later execution. The human expert
remains the final authority on what is included in the plan
and its validity. This approach has a raft of advantages for
spacecraft operations [26]. Intuitively, it allows the planning
software and model to perform the 80% of the planning task it
is capable of performing correctly. At the same time, cleaning
up the planner’s suggestions is far easier for the human expert
than creating a plan without the planner’s suggestions, analysis
and explanations. It frees us from what is potentially the fool’s
errand of attempting to develop models that are complete and
correct under any circumstances. Finally, it involves the user
in the process of developing a plan, so he or she is confident
in what the plan does and why. By analogy, a mixed-initiative
MBD system might assist a human expert in developing a
broad FP system that can be concisely described, validated, or
further modified by hand to reflect factors not captured by the
MBD system or its model. Existing commercial systems for
analyzing diagnosability and sensor placement are instances
of this approach. Further moves in this direction include
using MBD to compile FP rules that can be verified and
modified [20] or to verify the fault response design of a
traditional FP system [27]. We believe this style of leveraging
MBD technology represents an opportunity for the community
to gain greater impact on spacecraft operations and other
endeavors.

For potential customers of MBD or other similar technolo-
gies, we hope this paper might inspire ways of thinking about
the effective value to a project or mission. For advocates, we
hope this paper might gather common criticisms of model
based diagnosis technology into specific categories which can
be addressed through research and development or rebutted
through counter-examples or demonstration.

XI. RELATED WORK

In this section we discuss techniques for analyzing the
benefits of a technology similar to the one presented for MBD.
We then present a small set of systems that are model-based,
or pertain to diagnosis and recovery, or have been fielded in
operational use, our ultimate interest being finding a system
that is all three. Finally, we discuss some systems that are using
MBD-related technologies in a more mixed-initiative format
for development of fault-protection systems.

A number of analytic approaches exist for examining
the cost/benefit tradeoffs of technology investments. The
cost/benefit analysis presented in this paper is an instance
of a more general technology investment analysis described
by Lincoln et al. [31]. This methodology has been applied
to other spacecraft autonomy technologies, but not MBD in

particular. Chase et al. propose a utility-based method based
on science return for evaluating inclusion of new technologies
into Mars rover missions [32]. Similar analyses have been
applied to Integrated Vehicle Health Management (IVHM)
technologies [28], [29], [30]. IVHM is broader and somewhat
orthogonal to model-based diagnosis and recovery as we have
framed it, in that IVHM is typically concerned with all aspects
of supporting operations of one or a fleet of systems. The focus
of IVHM is typically on increasing operational availability
and reducing maintenance and support costs, with somewhat
less emphasis on on-line diagnosis of an operational system
to allow it to continue a specific sortie or mission. Williams
for example describes a discrete event simulation that can
compute different quantitative measures of effectiveness such
as missions completed or number of vehicles in maintenance
in a given period [28]. The tool is aimed at analyzing the
sensitivity of various operational concepts to given assump-
tions about the performance of various IVHM capabilities.
Our paper suggests a very similar, less mature but potentially
more specialized method for evaluating MBD specifically. It
also focuses on how assumptions about performance and the
customer’s operational model (the input to Williams’ analysis
methods) led to overestimating the impact of model-based
diagnosis and recovery, and what factors in hindsight might
have allowed a more accurate cost/benefit analysis.

We next discuss operational diagnosis systems, a few model-
based systems, and finally MBD systems. There are many
commercially successful diagnosis applications. For example,
every car sold in the United States since 1996 is required to
comply with the On-Board Diagnostics II (OBDII) standard,
which specifies a set of on-board tests and makes diagnostic
information available to off-board diagnostic systems. Some
vehicles are even able to perform some amount of active
testing, and have a “limp home” mode when sensors or engine
control actuators are suspect [33]. However, what we are
specifically interested in is systems that generate diagnoses
on-line, based on some generic engine or set of principles
plus a domain description of some sort, rather than systems
where engineering analysis is encoded into static code or a
table representing a recovery policy. It is interesting to note
that when millions of the same unit will be manufactured (for
example, a vehicle controller) one can amortize the cost of
developing a high performance control system through engi-
neering analysis, somewhat undermining the cost reduction
motivation of MBD.

The very successful Cassini mission, whose main propulsion
system was later used as a benchmark problem in development
of Livingstone, made use of a very capable rule-based fault
diagnosis and recovery system in operations [34], [2]. That
is, a FMECA process was used to derive the set of critical
failures, the symptoms or monitored sensor values that would
result, and the appropriate responses. These mappings from
monitored values to diagnosed states were encoded in rules.
The appropriate commands to respond to each state were
similarly encoded. For situations that could not be mapped
directly from the sensor states to a diagnosis, the spacecraft
would temporarily be set to a simple, safe state then the
spacecraft would execute a sequence of commands designed
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to reveal the problem or move the spacecraft from the safe
state to an operational state.

There have been quite a few operational uses of what may
be loosely called model-based autonomy technologies outside
the arena of MBD. For example, the EO1 spacecraft [18], 2003
Mars Exploration Rovers[35], 2007 Phoenix Mars Lander [26]
and upcoming Mars Science Laboratory rover [26] all used
or are preparing to use model-based planning and scheduling
software in routine operations. Thousands of daily operational
plans have been generated for the Mars Exploration Rovers,
and Casper planner was the basis of a low cost mission
extension for the EO-1 spacecraft. We believe some of the
differences in impact between the conceptually similar tech-
nologies of model-based planning and MBD can be put into
the context of our analysis. First, the likelihood of the system
being called into use is essentially 1.0 in the planning case,
as the planner is typically in daily use to generate plans for
routine operations. Contrast this with the diagnosis system,
where the likelihood of providing utility is the product of the
likelihood of each failure, the likelihood that the failure was
a priori covered by the diagnostic model, and the likelihood
there is an effective recovery. Second, based on our experience
with diagnosis and planning the cost of modeling is lower for
planning. The planner model concerns only nominal operation
of the spacecraft, which is typically well understood, often
well documented, and in some cases can be translated into a
model from existing mission artifacts [26]. Compare this with
model-based diagnosis, where the modeling task is to write
a set of models that capture, again a priori, a set of relevant
failures and how the failure signals are propagated across the
system once it stops behaving according to its nominal model.

Researchers at Xerox PARC developed a model-based sys-
tem for planning and scheduling print jobs within recon-
figurable high Xerox end printers [36] that has been used
in Xerox products since 1995. Engineers developing new
variations of the machines write constraints between the sheets
of paper and components in the printing process, and do not
explicitly write a schedule or scheduling software for the
machine. For each print job, a model-driven scheduler within
the printer develops a schedule that is optimal for the job
characteristics and the constraints imposed by the components
available in the machine. This represents a commercially
successful deployment of model-based reasoning, but does
not appear to include any diagnosis, recovery or handling of
anomalies during operation of the machine.

We now come to MBD systems. Researchers at Xerox
PARC developed a MBD system for copiers [37] intended to
assist field technicians. After being presented to technicians,
the system was not deployed and a community knowledge
sharing system was deployed instead [38]. To paraphrase, the
model-based diagnoser was not deployed because technicians
knew how to identify and correct common faults, and small
optimizations in that process were not of high value. The real
issue was unexpected issues that were not foreseen during
the design of the machine or development of the diagnostic
models. These might arise from operating the machine in ex-
treme environments, unintentional interactions of components
in a newly released design, unanticipated failure modes as the

machines age, and so on. Thus, after a study of the technicians’
work process Eureka did not attempt to augment or replace
the expert technicians’ ability to perform diagnostic reasoning.
Eureka instead allows technicians to exchange tips on new
faults, diagnoses and responses as they are created in the field,
the success of which can be judged by its 20,000 users.

TEAMS [39] is a commercial design and diagnosis product
that has been applied to a number of aerospace systems.
TEAMS Designer allows the user to specify flow of ma-
terial or signals between subsystems of a physical system,
specify sensor placement, and write tests on sensor values.
TEAMS uses this information to perform off-line testabil-
ity analysis to determine which component failures can be
detected and further isolated, and make recommendations to
improve testability. This capability has been used for analysis
of large aerospace systems, and researchers are investigating
its use in determining the adequacy of FP responses very
early in the design of spacecraft systems [27]. TEAMS-RT
compiles the TEAMS model into a matrix which is used to
determine which subsystems may be faulty from the outcome
of sensor tests, and which can be examined and validated
before use. Researchers developed a TEAMS-RT prototype
to demonstrate near real-time diagnosis of systems on-board
a UH-60 Helicopter [40]. A prototype to assist engineers in
making pre-launch diagnosis decisions for NASA’s Ares 1-
X launch vehicle is currently in development, as is a system
for in-flight diagnosis of the NASA’s Orion capsule [41].
These applications have the strong advantage that the diagnosis
system is compiled into a matrix which can be validated, and
the diagnostic output is interpreted and vetted by an engineer
before action is taken. Similar work has been done to convert
a MBD model to a set of rules that can be validated [20].
Challenges always arise when attempting to move from a
prototype to a production system with demands on risk, cost
and benefits. We believe the best opportunity lies in these kinds
of applications where MBD technology assists in developing
a broad FP system that can be validated before execution and
where appropriate, the output is vetted by an expert before
being acted upon.
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